|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность S с центром O . Биссектриса угла ABD пересекает сторону AD и окружность S в точках K и M соответственно. Биссектриса угла CBD пересекает сторону CD и окружность S в точках L и N соответственно. Известно, что прямые KL и MN параллельны. Докажите, что описанная окружность треугольника MON проходит через середину отрезка BD . Есть доска размером 7 × 12 клеток и кубик, грань которого равна клетке. Одна грань кубика окрашена невысыхающей краской. Кубик можно поставить в некоторую клетку доски и перекатывать через ребро на соседнюю грань. Ставить кубик дважды на одну и ту же клетку нельзя. Какое наибольшее количество клеток сможет посетить кубик, не испачкав доску краской? Все клетки верхнего ряда квадрата 14× 14 заполнены водой, а в одной клетке лежит мешок с песком (см. рис.). За один ход Вася может положить мешки с песком в любые 3 не занятые водой клетки, после чего вода заполняет каждую из тех клеток, которые граничат с водой (по стороне), если в этой клетке нет мешка с песком. Ходы продолжаются, пока вода может заполнять новые клетки. Как действовать Васе, чтобы в итоге вода заполнила как можно меньше клеток? |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1041]
Учительница написала на доске двузначное
число и спросила Диму по очереди, делится ли оно на 2?
на 3? на 4? … на 9? На все восемь вопросов Дима ответил
верно, причём ответов «да» и «нет» было поровну.
Все клетки верхнего ряда квадрата 14× 14 заполнены водой, а в одной клетке лежит мешок с песком (см. рис.). За один ход Вася может положить мешки с песком в любые 3 не занятые водой клетки, после чего вода заполняет каждую из тех клеток, которые граничат с водой (по стороне), если в этой клетке нет мешка с песком. Ходы продолжаются, пока вода может заполнять новые клетки. Как действовать Васе, чтобы в итоге вода заполнила как можно меньше клеток?
Есть доска размером 7 × 12 клеток и кубик, грань которого равна клетке. Одна грань кубика окрашена невысыхающей краской. Кубик можно поставить в некоторую клетку доски и перекатывать через ребро на соседнюю грань. Ставить кубик дважды на одну и ту же клетку нельзя. Какое наибольшее количество клеток сможет посетить кубик, не испачкав доску краской?
Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1041] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|