ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1041]      



Задача 66907

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Соколов А.

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$
Прислать комментарий     Решение


Задача 66948

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Касающиеся окружности ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9,10,11

Есть набор монет радиусами $1, 2, 3,\ldots, 10$ см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
Прислать комментарий     Решение


Задача 67097

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10,11

В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Прислать комментарий     Решение


Задача 78662

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 10,11

Можно ли выбрать 100 000 номеров телефонов из 6 цифр каждый так, чтобы при одновременном вычеркивании из всех этих номеров k-той цифры (k = 1, 2,...6) получились все пятизначные номера от 00000 до 99999?
Прислать комментарий     Решение


Задача 78674

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 9,10

Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени?
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1041]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .