ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 149]      



Задача 61541

Темы:   [ Разные задачи на разрезания ]
[ Задачи-шутки ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9,10

``65 = 64 = 63''. Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:




\begin{picture}
(80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}}
\multiput(0,0)(...
...(0,1){80}}
\put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50)
\end{picture}
        
\begin{picture}
(150,50)\multiput(0,0)(0,10){6}{\line(1,0){130}}
\multiput(0,0...
...0,1){30}}\put(50,20){\line(0,1){30}}
\qbezier(0,0)(65,25)(129,50)
\end{picture}



Как расположить те же четыре части шахматной доски, чтобы доказать равенство ``64=63''?

Прислать комментарий     Решение

Задача 66379

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 5,6,7

Разрежьте квадрат 9 × 9 клеток по линиям сетки на три фигуры равной площади так, чтобы периметр одной из частей оказался равным сумме периметров двух других.
Прислать комментарий     Решение


Задача 66398

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?
Прислать комментарий     Решение


Задача 77896

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 10,11

Сложить из одинаковых кирпичиков (см. рис.) выпуклый многогранник.

Прислать комментарий     Решение

Задача 79297

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .