ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 149]      



Задача 65925

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 6,7,8

Разрежьте фигуру, изображённую на рисунке, на две равные части.

Прислать комментарий     Решение

Задача 65967

Темы:   [ Разные задачи на разрезания ]
[ Процессы и операции ]
Сложность: 3+
Классы: 9,10

На столе лежит прямоугольный лист бумаги. Саша разрезает его по прямой на две части и кладёт части на стол. Потом он берёт одну из частей, снова режет по прямой на две части и кладёт части обратно на стол. Потом снова берёт со стола и разрезает одну часть, и так далее. Какое наименьшее количество разрезов необходимо сделать Саше, чтобы на столе оказалось, по крайней мере, 252 одиннадцатиугольника?

Прислать комментарий     Решение

Задача 66277

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 6,7,8

Разрежьте фигуру ниже на четыре части одинакового периметра так, чтобы среди этих частей не было равных.

Прислать комментарий     Решение

Задача 98540

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)

Прислать комментарий     Решение

Задача 98557

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Можно ли разрезать какой-нибудь треугольник на четыре выпуклые фигуры: треугольник, четырёхугольник, пятиугольник и шестиугольник?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .