ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 211]      



Задача 54490

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Вершины треугольника соединены с центром вписанной окружности. Проведёнными отрезками площадь треугольника разделилась на три части, равные 28, 60 и 80. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 55323

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник ABC вписана окружность, которая касается сторон AB, BC, AC соответственно в точках M, D, N. Найдите MD, если известно, что NA = 2, NC = 3, $ \angle$BCA = 60o.

Прислать комментарий     Решение


Задача 55324

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник KLM вписана окружность, которая касается стороны KM в точке A. Найдите AL, если известно, что AK = 10, AM = 4, а угол KLM равен 60o.

Прислать комментарий     Решение


Задача 55326

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник KLM вписана окружность, которая касается стороны KL в точке A, а стороны KM — в точке B. Найдите угол LMK, если известно, что BM = 5, AL = 10, а cos$ \angle$LKM = $ {\frac{1}{26}}$.

Прислать комментарий     Решение


Задача 66411

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
[ Ортогональная (прямоугольная) проекция ]
[ Скалярное произведение ]
Сложность: 3+
Классы: 9,10,11

На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 211]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .