ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Равнобедренные, вписанные и описанные трапеции
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный. Решение |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 292]
Боковая сторона равнобедренной трапеции равна a, средняя линия равна b, а один углов при большем основании равен 30o. Найдите радиус окружности, описанной около трапеции.
В равнобедренной трапеции даны основания a = 21, b = 9 и высота h = 8. Найдите радиус описанной окружности.
Найдите радиус окружности, описанной около равнобедренной трапеции с основаниями 2 и 14 и боковой стороной 10.
Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 292] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|