ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске 8×8 в клетках a1 и c3 стоят две одинаковые фишки. Петя и Вася ходят по очереди, начинает Петя. В свой ход игрок выбирает любую фишку и сдвигает её либо по вертикали вверх, либо по горизонтали вправо на любое число клеток. Выиграет тот, кто сделает ход в клетку h8. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл соперник? В одной клетке может стоять только одна фишка, прыгать через фишку нельзя. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 278]
Буратино выложил на стол 2016 спичек и предложил Арлекину и Пьеро сыграть в игру, беря по очереди спички со стола: Арлекин может своим ходом брать либо 5 спичек, либо 26, а Пьеро – либо 9, либо 23. Не дождавшись начала игры, Буратино ушел, а когда он вернулся, партия уже закончилась. На столе осталось две спички, а проиграл тот, кто не смог сделать очередной ход. Хорошенько подумав, Буратино понял, кто ходил первым, и кто выиграл. Выясните это и вы!
В углу шахматной доски 8×8 стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник?
На доске 8×8 в клетках a1 и c3 стоят две одинаковые фишки. Петя и Вася ходят по очереди, начинает Петя. В свой ход игрок выбирает любую фишку и сдвигает её либо по вертикали вверх, либо по горизонтали вправо на любое число клеток. Выиграет тот, кто сделает ход в клетку h8. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл соперник? В одной клетке может стоять только одна фишка, прыгать через фишку нельзя.
Имеется система уравнений *x + *y + *z = 0, *x + *y + *z = 0, *x + *y + *z = 0.Два человека поочерёдно вписывают вместо звёздочек числа.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 278] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|