Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 280]      



Задача 98299

Темы:   [ Теория игр (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого n такое наименьшее  k = k(n),  что к каждому n-значному числу можно приписать еще k цифр так, чтобы полученное (n+k)-значное число было полным квадратом.

Прислать комментарий     Решение

Задача 103967

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Задача 103969

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8,9

а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.
Прислать комментарий     Решение


Задача 116849

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Под ёлкой лежат 2012 шишек. Винни-Пух и ослик Иа-Иа играют в игру: по очереди берут себе шишки. Своим ходом Винни-Пух берёт одну или четыре шишки, а Иа-Иа – одну или три. Первым ходит Пух. Проигравшим считается тот, у кого нет хода. Кто из игроков сможет гарантированно победить, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 32807

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8,9

В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали.  Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 280]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .