ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких значениях параметра a уравнение (a – 1)x² – 2(a + 1)x + 2(a + 1) = 0 имеет только одно неотрицательное решение? Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде Bz – B z + C = 0, где C – чисто мнимое число. В прямоугольнике 3×n стоят фишки трёх цветов, по n штук
каждого цвета. На стол кладут правильный 100-угольник, в вершинах которого написаны числа 1, 2, ..., 100. Затем эти числа переписывают в порядке удаления от переднего края стола. Если две вершины находятся на равном расстоянии от края, сначала выписывается левое число, затем правое. Выписаны всевозможные наборы чисел, соответствующие разным положениям 100-угольника. Вычислить сумму чисел, стоящих в этих наборах на 13-х местах слева. При каких значениях параметра a оба корня уравнения (2 – a)x² – 3ax + 2a = 0 больше ½? На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 412]
На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел.
Отрезок длиной 3n разбивается на три равные части. Первая и третья из них
называются отмеченными. Каждый из отмеченных отрезков разбивается на три части,
из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока
не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются
отмеченными точками. Доказать, что для любого целого
k(1
Докажите, что для любого натурального n ≥ 2 справедливо неравенство:
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 412]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке