ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли расставить в клетках таблицы 6×6 числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике 1×5 (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023? |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 398]
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
Квадратный трёхчлен x² + bx + c имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Можно ли расставить в клетках таблицы 6×6 числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике 1×5 (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?
Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1,
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 398]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке