ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально? Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка [1, 2] и заставляет программу решать уравнение 3x + A = 0. Найдите вероятность того, что корень этого уравнения меньше чем –0,4. На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках? а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же. |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня.
Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до n ( n>1 ), одинаково читаться слева направо и справа налево?
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке