Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Вниз   Решение


Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

ВверхВниз   Решение


На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

ВверхВниз   Решение


а) Докажите, что производящая функция последовательности чисел Фибоначчи   F(x) = F0 + F1x + F2x² + ... + Fnxn + ...

может быть записана в виде     где   = = .

б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.

ВверхВниз   Решение


В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 107853

Темы:   [ Математическая логика (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9

Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.

Прислать комментарий     Решение

Задача 109592

Темы:   [ Уравнения высших степеней (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.

Прислать комментарий     Решение

Задача 109616

Темы:   [ Десятичная система счисления ]
[ Симметрия и инволютивные преобразования ]
[ Показательные неравенства ]
Сложность: 4-
Классы: 10,11

Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до n ( n>1 ), одинаково читаться слева направо и справа налево?
Прислать комментарий     Решение


Задача 73708

Темы:   [ Числовые таблицы и их свойства ]
[ Симметрия и инволютивные преобразования ]
[ Перебор случаев ]
Сложность: 4
Классы: 7,8,9

В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.

Прислать комментарий     Решение

Задача 110043

Темы:   [ Числовые таблицы и их свойства ]
[ Симметрия и инволютивные преобразования ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.

Докажите, что сумма всех чисел в таблице делится на 200.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .