ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что     (сумма берётся по всем целым i, 0 ≤ i ≤ n/2).

б) Докажите, что если p и q – различные числа и  p + q = 1,  то

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 112]      



Задача 30609

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 8,9,10

Последовательность a1, a2, a3, ... натуральных чисел такова, что  an+2 = an+1an + 1 при всех n.
  а)  a1 = a2 = 1.  Докажите, что ни один из членов последовательности не делится на 4.
  б) Докажите, что  an – 22  – составное число при любом n > 10.

Прислать комментарий     Решение

Задача 65308

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 9,10,11

Правильная игральная кость бросается много раз. Найдите математическое ожидание числа бросков, сделанных до того момента, когда сумма всех выпавших очков достигнет 2010 (то есть стала не меньше 2010).

Прислать комментарий     Решение

Задача 66056

Темы:   [ Дискретное распределение ]
[ Формула включения-исключения ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 9,10,11

Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости?

Прислать комментарий     Решение

Задача 73734

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 9,10,11

а) Докажите, что     (сумма берётся по всем целым i, 0 ≤ i ≤ n/2).

б) Докажите, что если p и q – различные числа и  p + q = 1,  то

Прислать комментарий     Решение

Задача 97828

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Индукция (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .