ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.) Решение |
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 1110]
В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)
Какое наибольшее количество а) ладей; б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?
В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где n > 3)?
Игральная доска имеет форму ромба с углом 60°. Каждая сторона ромба разделена на девять частей. Через точки деления проведены прямые, параллельные сторонам и малой диагонали ромба, разбивающие доску на треугольные клетки. Если на некоторой клетке поставлена фишка, проведём через эту клетку три прямые, параллельные сторонам и малой диагонали ромба. Клетки, которые они пересекут, будут считаться побитыми фишкой. Каким наименьшим числом фишек можно побить все клетки доски?
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|