ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Попов В. А.

На отрезке [0; 1] задана функция f. Эта функция во всех точках неотрицательна, f(1) = 1, наконец, для любых двух неотрицательных чисел x1 и x2, сумма которых не превосходит 1, величина f (x1 + x2) не превосходит суммы величин f(x1) и f(x2).

а) Докажите для любого числа x отрезка [0; 1] неравенство f(x2) ≤ 2x.

б) Для любого ли числа х отрезка [0; 1] должно быть верно неравенство f(x2) ≤ 1,9x?

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 416]      



Задача 116700

Темы:   [ Геометрическая прогрессия ]
[ Индукция (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 11

Для  n = 1, 2, 3  будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1,  (n + 2),  (n + 2)²,  ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.

Прислать комментарий     Решение

Задача 73808

Темы:   [ Монотонность, ограниченность ]
[ Индукция (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Автор: Попов В. А.

На отрезке [0; 1] задана функция f. Эта функция во всех точках неотрицательна, f(1) = 1, наконец, для любых двух неотрицательных чисел x1 и x2, сумма которых не превосходит 1, величина f (x1 + x2) не превосходит суммы величин f(x1) и f(x2).

а) Докажите для любого числа x отрезка [0; 1] неравенство f(x2) ≤ 2x.

б) Для любого ли числа х отрезка [0; 1] должно быть верно неравенство f(x2) ≤ 1,9x?
Прислать комментарий     Решение


Задача 110026

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Последовательность a1, a2,..,a2000 действительных чисел такова, что для любого натурального n , 1 n2000 , выполняется равенство

a13+a23+..+an3=(a1+a2+..+an)2.

Докажите, что все члены этой последовательности – целые числа.
Прислать комментарий     Решение

Задача 58201

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Индукция в геометрии ]
[ Раскраски ]
Сложность: 4+
Классы: 7,8,9

Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.
Прислать комментарий     Решение


Задача 67369

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Пучков П.

Для каких $n>0$ можно отметить на плоскости несколько различных точек и несколько различных окружностей так, чтобы были выполнены следующие условия:

- через каждую отмеченную точку проходит ровно $n$ отмеченных окружностей;

- на каждой отмеченной окружности лежит ровно $n$ отмеченных точек;

- у каждой отмеченной окружности отмечен еe центр?
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .