Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 153]
|
|
Сложность: 3 Классы: 8,9,10,11
|
В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
|
|
Сложность: 3 Классы: 7,8,9
|
По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)
|
|
Сложность: 3 Классы: 7,8,9
|
Два пешехода вышли на рассвете. Каждый шёл с постоянной скоростью. Один шёл
из A в B, другой – из B в A. Они встретились в полдень и, не прекращая движения, пришли: один – в B в 4 часа вечера, а другой – в A в 9 часов вечера. В котором часу в тот день был рассвет?
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 153]