ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что при центральной симметрии окружность переходит в окружность. Решение Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2. Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 117]
Васе задали на дом уравнение x² + p1x + q1 = 0, где p1 и q1 – целые числа. Он нашел его корни p2 и q2 и написал новое уравнение x² + p2x + q2 = 0. Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вася, у него не получилось составить пятое уравнение так, чтобы оно имело два различных вещественных корня, и Вася сильно расстроился. Какое уравнение Васе задали на дом?
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
x1 – вещественный корень уравнения x² + ax + b = 0, x2 – вещественный корень уравнения x² – ax – b = 0.
Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 117] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|