ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Алгебраические неравенства (прочее)
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеется 1959 положительных чисел a1, a2..., a1959, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1. Решение |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 177]
Найти все решения системы уравнений: (x + y)³ = z, (y + z)³ = x, (z + x)³ = y.
Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³.
Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Дан многочлен P(x) = a0xn + a1xn–1 + ... + an–1x + an. Положим m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 177] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|