Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 177]
|
|
Сложность: 4 Классы: 9,10,11
|
По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
а) Найти среднее количество поражённых мишеней.
б) Может ли среднее количество поражённых мишеней быть меньше n/2?
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть a – положительный корень уравнения x2017 – x – 1 = 0, а b – положительный корень уравнения y4034 – y = 3a.
а) Сравните a и b.
б) Найдите десятый знак после запятой числа |a – b|.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что для любых натуральных a1, a2, ..., ak
таких, что , у уравнения
не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число,
не превосходящее x.)
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$. ([$x$] – целая часть числа $x$.)
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 177]