ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что если многоугольник таков, что из некоторой точки O виден весь его контур, то из любой точки плоскости полностью видна хотя бы одна его сторона.

Вниз   Решение


Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 58148

Тема:   [ Невыпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Докажите, что если многоугольник таков, что из некоторой точки O виден весь его контур, то из любой точки плоскости полностью видна хотя бы одна его сторона.
Прислать комментарий     Решение


Задача 58149

Тема:   [ Невыпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Докажите, что сумма внешних углов любого многоугольника, прилегающих к меньшим 180o внутренним углам, не меньше 360o.
Прислать комментарий     Решение


Задача 78223

Темы:   [ Невыпуклые многоугольники ]
[ Принцип Дирихле (углы и длины) ]
[ Композиции поворотов ]
Сложность: 4+
Классы: 8,9,10

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
Прислать комментарий     Решение


Задача 58150

Темы:   [ Невыпуклые многоугольники ]
[ Наименьший или наибольший угол ]
[ Разные задачи на разрезания ]
Сложность: 5
Классы: 9,10

Автор: Хомодов А.

а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него.
б) Выясните, какое наименьшее число таких диагоналей может иметь n-угольник.

Прислать комментарий     Решение

Задача 58151

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Чему равно наибольшее число вершин невыпуклого n-угольника, из которых нельзя провести диагональ?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .