ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Признаки и свойства параллелограмма
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два пересекающихся отрезка AС и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна (сравните с задачей 1 для 10 класса). Решение |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 402]
В параллелограмме ABCD угол C — острый, сторона AB равна 3, сторона BC равна 6. Из вершины C опущен перпендикуляр CE на продолжение стороны AB. Точка E, основание перпендикуляра CE, соединена отрезком прямой с точкой F, серединой стороны AD. Известно, что угол AEF равен . Найдите площадь четырёхугольника AECD.
Около треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E. Известно, что AB + AD = DE, BAD = 60o, AE = 6. Найдите площадь треугольника ABC.
В параллелограмме ABCD угол ACD равен 30o. Известно, что центры окружностей, описанных около треугольников ABD и BCD, расположены на диагонали AC. Найдите угол ABD.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 402] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|