ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 258]      



Задача 116439

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите все неотрицательные решения системы уравнений:
    x³ = 2y² – z,
    y³ = 2z² – x,
    z³ = 2x² – y.

Прислать комментарий     Решение

Задача 116928

Темы:   [ Уравнения высших степеней (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Решите уравнение:  .

Прислать комментарий     Решение

Задача 78474

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

Прислать комментарий     Решение

Задача 30858

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 6,7

Найдите наибольшее из чисел  5100, 691, 790, 885.

Прислать комментарий     Решение

Задача 34893

Темы:   [ Метод координат в пространстве (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Докажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса  

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .