|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Пусть $P$ – произвольная точка внутри (и не на сторонах) треугольника $ABC$, лежащая на описанной окружности треугольника $ABH$, и $A', B', C'$ – проекции точки $P$ на прямые $BC, CA, AB$. Докажите, что описанная окружность треугольника $A'B'C'$ проходит через середину отрезка $CP$. На сколько частей делят пространство n плоскостей, проходящих через одну точку, если никакие три не имеют общей прямой? На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]
Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.
Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.
На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.
Даны точки A(–1, 5) и B(3, –7). Найдите расстояние от начала координат до середины отрезка AB.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|