ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что
Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что 1 – (1 – A)(1 – B)(1 – C) > K. Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS. На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 175]
Две прямые, проходящие через точку M, лежащую вне окружности с центром O, касаются окружности в точках A и B. Отрезок OM делится окружностью пополам. В каком отношении отрезок OM делится прямой AB?
На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.
Окружность радиуса R касается смежных сторон AB и AD квадрата ABCD , пересекает сторону BC в точке E и проходит через точку C . Найдите BE .
На продолжении диаметра AB окружности отложен отрезок BC , равный диаметру. Прямая, проходящая через точку C , касается окружности в точке M . Найдите площадь треугольника ACM , если радиус окружности равен R .
Через каждую точку A , лежащую на данной окружности, проводится касательная и на ней откладывается отрезок AM , равный данному. Найдите геометрическое место точек M .
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 175]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке