ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось
100 кучек по одному камешку. Докажите, что
  а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;
  б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;
  в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.

Вниз   Решение


Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок своими концами упирался строго внутрь других отрезков.

ВверхВниз   Решение


Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 64822

Темы:   [ Квадратные уравнения. Формула корней ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 8,9,10

Решите уравнение:  x(x + 1) = 2014·2015.

Прислать комментарий     Решение

Задача 60855

Темы:   [ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Один из корней уравнения  x² + ax + b = 0  равен  1 + .  Найдите a и b, если известно, что они рациональны.

Прислать комментарий     Решение

Задача 98242

Темы:   [ Квадратные уравнения. Формула корней ]
[ Иррациональные неравенства ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

Прислать комментарий     Решение

Задача 79260

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79263

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .