ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые. |
Страница: << 1 2 3 4 >> [Всего задач: 17]
Через точку пространства проведены четыре плоскости, никакие три из которых не имеют общей прямой. На сколько частей делят пространство эти плоскости? Как называются образовавшиеся части пространства?
Плоскость α пересекает рёбра AB, BC, CD и DA треугольной пирамиды ABCD в точках K, L, M и N соответственно. Оказалось, что двугранные углы
В треугольной пирамиде SABC известны плоские углы при вершине
S :
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке