ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 71]      



Задача 79270

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 97823

Темы:   [ Раскраски ]
[ Принцип Дирихле (углы и длины) ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Прислать комментарий     Решение

Задача 58084

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4
Классы: 7,8

На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Прислать комментарий     Решение


Задача 66092

Темы:   [ Задачи на движение ]
[ Принцип Дирихле (углы и длины) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной d метров. При каком наименьшем d фотограф рано или поздно заведомо сможет сделать удачный снимок?

Прислать комментарий     Решение

Задача 79403

Темы:   [ Ломаные внутри квадрата ]
[ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .