Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 75]
На окружности длины 15 выбрано
n точек, так что для каждой имеется ровно
одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2
(расстояние измеряется по окружности). Докажите, что
n делится на 10.
|
|
Сложность: 3+ Классы: 9,10
|
Каково наибольшее
n, при котором так можно расположить
n точек на
плоскости, чтобы каждые 3 из них служили вершинами прямоугольного
треугольника?
|
|
Сложность: 3+ Классы: 7,8,9
|
На плоскости дано множество из
n9
точек. Для любых 9 его точек
можно выбрать две окружности так, что все эти точки окажутся на выбранных
окружностях. Докажите, что все
n точек лежат на двух окружностях.
|
|
Сложность: 4- Классы: 7,8,9
|
На плоскости расположено
N точек. Отметим середины всевозможных отрезков с
концами в этих точках. Какое наименьшее число отмеченных точек может
получиться?
Какое наименьшее количество точек на плоскости надо взять, чтобы среди
попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 75]