Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 302]
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1 четыре числа
– длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с
положительной разностью d, причём AA1 < AB < BC.
Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены
так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней
ABB1A1, ADD1A1,
ABCD, а вторая – граней BCC1B1,
CDD1C1,
A1B1C1D1.
Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми
CD1 и AC1; в) радиус R.
|
|
Сложность: 3+ Классы: 8,9,10
|
У куба отмечены вершины и центры граней, а также проведены диагонали всех граней.
Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно один раз?
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли через вершины куба провести 8 параллельных плоскостей так,
чтобы расстояния между соседними плоскостями были равны?
Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной
1. Столбик – это три кубика, стоящих рядом вдоль одного направления:
ширины, длины или высоты. Может ли быть так, что в каждом столбике
а) нечётное количество белых кубиков?
б) нечётное количество чёрных кубиков?
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 302]