Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

На плоскости задано N векторов - направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых):

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль-вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что некоторая система векторов B эквивалентна системе A, если от системы A можно перейти к B с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из минимально возможного числа векторов.

Формат входных данных

В первой строке входного файла f.in записано число N - количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - целые числа, по модулю не превосходящие 1000.

Формат выходных данных

В первой строке входного файла f.out следует записать число M - количество векторов в полученной системе (1 ≤ MN). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - вещественные числа, записанные с 6 цифрами после точки.

Примеры

f.in

f.out

3

1 1 1 3

3 3 3 1

5 1 7 1

1

3.000000 3.000000 5.000000 3.000000

2

2 4 5 10

-2 -4 -5 -10

1

2.000000 4.000000 2.000000 4.000000

ВверхВниз   Решение


Представить гомотетию    с центром в точке i с коэффициентом 2 в виде композиции параллельного переноса и гомотетии с центром в точке O.

ВверхВниз   Решение


Каким точкам фазовой плоскости соответствуют квадратные трёхчлены, не имеющие корней?

ВверхВниз   Решение


Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.

ВверхВниз   Решение


Решите уравнение $ {\frac{x^3}{\sqrt{4-x^2}}}$ + x2 - 4 = 0.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 116794

Тема:   [ Иррациональные уравнения ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Решите уравнение:   .

Прислать комментарий     Решение

Задача 66348

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 10,11

Решите уравнение  

Прислать комментарий     Решение

Задача 79548

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Решите уравнение

(x2 + x)2 + $\displaystyle \sqrt{x^2-1}$ = 0.

Прислать комментарий     Решение

Задача 116615

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите уравнение:  .

Прислать комментарий     Решение

Задача 79449

Тема:   [ Иррациональные уравнения ]
Сложность: 3
Классы: 9

Решите уравнение $ {\frac{x^3}{\sqrt{4-x^2}}}$ + x2 - 4 = 0.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .