Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 737]
|
|
Сложность: 3+ Классы: 7,8,9
|
а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?
|
|
Сложность: 3+ Классы: 7,8,9
|
Девять одинаковых по виду монет расположены
по кругу. Пять из них настоящие, а четыре — фальшивые.
Никакие две фальшивые монеты не лежат рядом. Настоящие монеты весят
одинаково, и фальшивые — одинаково (фальшивая монета тяжелее
настоящей). Как за два взвешивания на чашечных весах без гирь
определить все фальшивые монеты?
|
|
Сложность: 4- Классы: 7,8,9
|
Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики
делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую
кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто
после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля
сделать так, чтобы выиграть при любой игре Вити?
В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку.
Может ли заяц выбежать из квадрата, если волки могут бегать только по
сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем
максимальная скорость зайца?
|
|
Сложность: 4- Классы: 8,9,10
|
По поляне, имеющей форму равностороннего треугольника со стороной 100 м, бегает
волк. Охотник убивает волка, если стреляет в него с расстояния не более 30 м.
Доказать, что охотник может убить волка, как бы быстро тот ни бегал.
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 737]