ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 737]      



Задача 79620

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Прислать комментарий     Решение


Задача 109906

Темы:   [ Взвешивания ]
[ Неопределено ]
Сложность: 4+
Классы: 7,8,9

Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за три взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
Прислать комментарий     Решение


Задача 35368

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Лабиринтом называется клетчатый квадрат 10*10, некоторые пары соседних узлов в котором соединены отрезком - "стеной" таким образом, что переходя из клетки в соседнюю по стороне клетку и не проходя через стены, можно посетить все клетки квадрата. Границу квадрата будем также считать обнесенной стеной. В некоторой клетке некоторого лабиринта стоит робот. Он понимает 4 команды - Л, П, В, Н, по которым соответственно идет влево, вправо, вверх и вниз, а если перед ним "стена", то стоит на месте. Как написать программу для робота, выполняя которую он обойдет все клетки независимо от лабиринта и от своего начального положения?
Прислать комментарий     Решение


Задача 78721

Темы:   [ Теория игр (прочее) ]
[ Полуинварианты ]
Сложность: 5-
Классы: 8,9,10

Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)
Прислать комментарий     Решение


Задача 61350

Темы:   [ Взвешивания ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ Системы линейных уравнений ]
Сложность: 5-
Классы: 9,10,11

Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
  а) масса каждой гири равна целому числу граммов;
  б) масса каждой гири равна рациональному числу граммов;
  в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.

Прислать комментарий     Решение

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .