ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.

Вниз   Решение


Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

ВверхВниз   Решение


Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

ВверхВниз   Решение


Медиана AD и биссектриса CE прямоугольного треугольника ABC  (∠B = 90°)  пересекаются в точке M.
Найдите площадь треугольника ABC, если  CM = 8,  ME = 5.

ВверхВниз   Решение


Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m .

ВверхВниз   Решение


Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

ВверхВниз   Решение


Найдите сумму величин углов MAN, MBN, MCN, MDN и MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
Рис. 1

ВверхВниз   Решение


В пирамиде ABCD длина отрезка BD равна , точка E – середина AB , а F – точка пересечения медиан грани BCD , причём EF=6 . Сфера радиуса 5 касается плоскостей ABD и BCD в точках E и F соответственно. Найдите двугранный угол между гранями ABD и BCD , площадь грани BCD и объём пирамиды ABCD .

ВверхВниз   Решение


Докажите неравенство  (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc  для положительных значений переменных.

ВверхВниз   Решение


Докажите, что при  n > 1  число   11 + 3³ + ... + (2n – 1)2n – 1   делится на 2n, но не делится на 2n+1.

ВверхВниз   Решение


Высота AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 вдвое больше каждой из сторон основания. Найдите угол между прямыми BD1 и AM , где M – точка пересечения диагоналей грани DCC1D1 .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 109246

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Прямые и плоскости в пространстве ]
Сложность: 2
Классы: 10,11

Точки A , B , C и D не лежат в одной плоскости. Докажите, что прямые AB и CD не пересекаются.
Прислать комментарий     Решение


Задача 77945

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 2+
Классы: 10,11

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Прислать комментарий     Решение


Задача 86953

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Тетраэдр (прочее) ]
Сложность: 3
Классы: 10,11

В тетраэдре ABCD проведены медианы AM и DN граней ACD и ADB . На этих медианах взяты соответственно точки E и F , причём EF || BC . Найдите отношение EF:BC .
Прислать комментарий     Решение


Задача 87038

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 . Найдите углы между прямыми: а) AA1 и BD1 ; б) BD1 и DC1 ; в) AD1 и DC1 .
Прислать комментарий     Решение


Задача 87039

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Высота AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 вдвое больше каждой из сторон основания. Найдите угол между прямыми BD1 и AM , где M – точка пересечения диагоналей грани DCC1D1 .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .