ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решите уравнение x³ + x – 2 = 0 подбором и по формуле Кардано. Докажите, что произвольное уравнение третьей степени z³ + Az² + Bz + C = 0 при помощи линейной замены переменной z = x + β можно привести к виду x3 + px + q = 0. Найдите сумму всех плоских углов треугольной пирамиды. Известно, что Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали. Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6? Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Требуется вычислить количество N-значных чисел в системе счисления с основанием K, таких что их запись не содержит двух подряд идущих нулей. Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров? Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k]. Найдите последнюю цифру числа 19891989. Пусть a – заданное вещественное число, n – натуральное число, n > 1. На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника. В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых). На плоскости даны изображение (параллельная проекция) плоского четырёхугольника ABCD и точки M , не лежащей в его плоскости. Постройте изображение прямой, по которой пересекаются плоскости ABM и CDM .
В шаре радиуса Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер. |
Страница: 1 2 3 >> [Всего задач: 15]
Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер.
Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.
Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.
Найдите длину кратчайшего пути по поверхности единичного куба между серединой его ребра и наиболее удалённой от неё точки поверхности куба.
Боковое ребро правильной четырёхугольной пирамиды равно b , а плоский угол при вершине равен α . Найдите длину кратчайшего замкнутого пути по поверхности пирамиды, начинающегося и заканчивающегося в вершине основания и пересекающего все боковые рёбра пирамиды.
Страница: 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке