Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Решите уравнение  x³ + x – 2 = 0  подбором и по формуле Кардано.

Вниз   Решение


Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

ВверхВниз   Решение


Найдите сумму всех плоских углов треугольной пирамиды.

ВверхВниз   Решение


Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

ВверхВниз   Решение


Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.

ВверхВниз   Решение


Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?

ВверхВниз   Решение


Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?

ВверхВниз   Решение


Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).

ВверхВниз   Решение


Требуется вычислить количество N-значных чисел в системе счисления с основанием K, таких что их запись не содержит двух подряд идущих нулей.
Ограничения: 2 <= K <= 10, N + K <= 18.
Формат входных данных
Числа N и K в десятичной записи, разделенные пробелом или переводом строки.
Формат выходных данных
Искомое число в десятичной записи.

ВверхВниз   Решение


Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?

ВверхВниз   Решение


Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел:

X [p+1]< X [p+2]>X [p+3]<...> X[p+k].

ВверхВниз   Решение


Найдите последнюю цифру числа 19891989.

ВверхВниз   Решение


Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

ВверхВниз   Решение


На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника.

ВверхВниз   Решение


В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).

ВверхВниз   Решение


На плоскости даны изображение (параллельная проекция) плоского четырёхугольника ABCD и точки M , не лежащей в его плоскости. Постройте изображение прямой, по которой пересекаются плоскости ABM и CDM .

ВверхВниз   Решение


В шаре радиуса просверлено цилиндрическое отверстие; ось цилиндра проходит через центр шара, а диаметр основания цилиндра равен радиусу шара. Найдите объём оставшейся части шара.

ВверхВниз   Решение


Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 87070

Темы:   [ Кратчайший путь по поверхности ]
[ Развертка помогает решить задачу ]
[ Правильные многогранники (прочее) ]
Сложность: 3
Классы: 8,9

Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер.
Прислать комментарий     Решение


Задача 110300

Темы:   [ Кратчайший путь по поверхности ]
[ Правильный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.
Прислать комментарий     Решение


Задача 110301

Темы:   [ Кратчайший путь по поверхности ]
[ Куб ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.
Прислать комментарий     Решение


Задача 110302

Темы:   [ Кратчайший путь по поверхности ]
[ Куб ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного куба между серединой его ребра и наиболее удалённой от неё точки поверхности куба.
Прислать комментарий     Решение


Задача 110303

Темы:   [ Кратчайший путь по поверхности ]
[ Правильная пирамида ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Боковое ребро правильной четырёхугольной пирамиды равно b , а плоский угол при вершине равен α . Найдите длину кратчайшего замкнутого пути по поверхности пирамиды, начинающегося и заканчивающегося в вершине основания и пересекающего все боковые рёбра пирамиды.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .