ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

Вниз   Решение


Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


ВверхВниз   Решение


На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.

ВверхВниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно. Докажите, что существуют такие многочлены T(x) и R(x), что
P(x) = Q(x)T(x) + R(x)  и  deg R(x) < degQ(x);  при этом T(x) и R(x) определяются однозначно.

ВверхВниз   Решение


Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2. Докажите, что точка пересечения прямых l1 и l2 лежит на описанной окружности треугольника A1OA2.

ВверхВниз   Решение


Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 87287

Темы:   [ Боковая поверхность призмы ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 8,9

Основание наклонной призмы – равносторонний треугольник со стороной a . Одно из боковых рёбер равно b и образует с прилежащими сторонами основания углы 45o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 87416

Темы:   [ Боковая поверхность призмы ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 10,11

Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.
Прислать комментарий     Решение


Задача 87408

Темы:   [ Куб ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.
Прислать комментарий     Решение


Задача 109341

Темы:   [ Cфера, вписанная в призму ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна S.
Прислать комментарий     Решение


Задача 110323

Темы:   [ Объем призмы ]
[ Боковая поверхность призмы ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, пересекающая боковую поверхность правильной 2n -угольной призмы, но не пересекающая её оснований, делит ось призмы, её боковую поверхность и объём в одном и том же отношении.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .