ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через стороны равностороннего треугольника проведены три плоскости, образующие угол α с плоскостью этого треугольника и пересекающиеся в точке, удалённой на расстояние d от плоскости треугольника. Найдите радиус окружности, вписанной в данный равносторонний треугольник.

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694]      



Задача 87597

Темы:   [ Теорема о трех перпендикулярах ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Через стороны равностороннего треугольника проведены три плоскости, образующие угол α с плоскостью этого треугольника и пересекающиеся в точке, удалённой на расстояние d от плоскости треугольника. Найдите радиус окружности, вписанной в данный равносторонний треугольник.
Прислать комментарий     Решение


Задача 87599

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Отрезки AD , BD и CD попарно перпендикулярны. Известно, что площадь треугольника ABC равна S , а площадь треугольника ABD равна Q . Найдите площадь ортогональной проекции треугольника ABD на плоскость ABC .
Прислать комментарий     Решение


Задача 87601

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Найдите двугранные углы пирамиды ABCD , в которой AB = BC = CA = a , AD = BD = CD = b .
Прислать комментарий     Решение


Задача 87602

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми).
Прислать комментарий     Решение


Задача 87603

Темы:   [ Двугранный угол ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11

Из точки M , расположенной внутри двугранного угла, равного ϕ , опущены перпендикуляры на его грани (имеются в виду лучи, выходящие из точки M ). Докажите, что угол между этими перпендикулярами равен 180o - ϕ .
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .