ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней. В клетчатом квадрате 64*64 вырезали одну из клеток. Докажите, что оставшуюся часть квадрата можно разрезать на уголки из трех клеток.
На гипотенузе AВ прямоугольного треугольника ABC отметили точку D так, что ВD = AС. Докажите, что в треугольнике AСD биссектриса AL, медиана СM и высота DH пересекаются в одной точке. В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна. На шахматной доске расставлены 8 ладей так, что они не бьют друг друга. Докажите, что в любой арифметической прогрессии, состоящей из натуральных чисел, найдутся два члена с одинаковой суммой цифр. Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Дед звал внука к себе в деревню:
На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника.
Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?
Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке