ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01. Решение |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 258]
В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.
Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что если при n = 2, ..., 10, то
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|