ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 488]      



Задача 97802

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Прислать комментарий     Решение

Задача 97920

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

Прислать комментарий     Решение

Задача 98050

Темы:   [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Автор: Фомин Д.

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 200 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 200, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири - на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
  а) Приведите пример правильного набора, в котором не все гири по одному грамму.
  б) Сколько существует различных правильных наборов?
(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)

Прислать комментарий     Решение

Задача 98056

Темы:   [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Автор: Фомин Д.

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 500 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири – на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
  а) Приведите пример правильного набора, в котором не все гири по одному грамму.
  б) Сколько существует различных правильных наборов?
(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)

Прислать комментарий     Решение

Задача 98489

Темы:   [ Средние величины ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
[ Системы линейных уравнений ]
Сложность: 4-
Классы: 8,9

а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.

б) На доске выписано 100 целых чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .