ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)

Вниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Автор: Анджанс А.

Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2n.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



Задача 66304

Темы:   [ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

На плоскости даны два правильных тринадцатиугольника A1A2...A13 и B1B2...B13, причём точки B1 и A13 совпадают и лежат на отрезке A1B13, а многоугольники лежат по одну сторону от этого отрезка. Докажите, что прямые A1A9, B13B8 и A8B9 проходят через одну точку.

Прислать комментарий     Решение

Задача 78500

Темы:   [ Правильные многоугольники ]
[ Раскладки и разбиения ]
[ Признаки подобия ]
Сложность: 4-
Классы: 9,10

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

Прислать комментарий     Решение

Задача 79399

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9,10

У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует трапеция с вершинами в отмеченных точках.

Прислать комментарий     Решение

Задача 97808

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Анджанс А.

Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2n.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Прислать комментарий     Решение

Задача 97875

Темы:   [ Правильные многоугольники ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9

  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .