ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 278]      



Задача 79445

Темы:   [ Теория игр (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

Дорожки в зоопарке образуют равносторонний треугольник, в котором проведены средние линии. Из клетки сбежала обезьянка. Её ловят два сторожа. Смогут ли они поймать обезьянку, если все трое будут бегать только по дорожкам, скорость обезьянки и скорости сторожей равны и они видят друг друга?

Прислать комментарий     Решение

Задача 97939

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97942

Темы:   [ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Задача 98218

Темы:   [ Симметричная стратегия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается  9·6 = 54  дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.

Прислать комментарий     Решение

Задача 98295

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 6,7,8

Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число  K – H  считается выигрышем первого игрока (проигрышем второго).
  а) Существует ли у первого игрока беспроигрышная стратегия?
  б) Существует ли у него выигрышная стратегия?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 278]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .