Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В правильной четырёхугольной пирамиде SABCD ( S – вершина) сторона основания равна 4 , высота пирамиды SH равна 8. SE – апофема пирамиды, лежащая в грани ASD . Через точку C перпендикулярно прямой SE проходит плоскость, которая пересекает отрезок SH в точке O . Точки P и Q расположены на прямых SE и CB соответственно, причём прямая PQ касается сферы радиуса с центром в точке O . Найдите наименьшую длину отрезка PQ .

Вниз   Решение


Основанием пирамиды служит правильный шестиугольник ABCDEF , а её боковое ребро SA перпендикулярно плоскости основания. Расстояния от точек B и C до прямой SD равны соответственно и . а) Чему равна площадь треугольника ASD ? б) Найдите отношение наименьшей из площадей треугольных сечений пирамиды, проходящих через ребро SD , к площади треугольника ASD .

ВверхВниз   Решение


Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии.

ВверхВниз   Решение


Докажите, что  cos 2$ \alpha$ + cos 2$ \beta$ - cos 2$ \gamma$ $ \leq$ 3/2.

ВверхВниз   Решение


В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Сколько лет младшему?

ВверхВниз   Решение


Автор: Фольклор

Доказать, что существует бесконечно много таких пар  (a, b)  натуральных чисел, что  a² + 1  делится на b, а  b² + 1  делится на a.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 420]      



Задача 78526

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 97949

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что существует бесконечно много таких пар  (a, b)  натуральных чисел, что  a² + 1  делится на b, а  b² + 1  делится на a.

Прислать комментарий     Решение

Задача 107630

Темы:   [ Делимость чисел. Общие свойства ]
[ Ориентированные графы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.

Прислать комментарий     Решение

Задача 107778

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.

Прислать комментарий     Решение

Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .