Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 102]
На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки n – 1 цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.
|
|
Сложность: 4 Классы: 7,8,9
|
Рассматривается последовательность слов из букв "A" и "B". Первое слово –
"A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид: "A", "B", "AB", "BAB", "ABBAB", ...). Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?
В четырёхугольнике ABCD AB = BC = CD = 1, AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным
отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.
|
|
Сложность: 4 Классы: 7,8,9
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?
|
|
Сложность: 4 Классы: 7,8,9,10
|
По окружности в одном направлении на равных расстояниях курсируют n поездов. На этой дороге в вершинах правильного треугольника расположены станции A, B и C (обозначенные по направлению движения). Ира входит на станцию A и одновременно Лёша входит на станцию B, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 102]