Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 112]
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок)
а) сто чисел,
б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2 – ak–1)?
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
На доску последовательно выписываются числа a1 = 1, a2, a3, ... по следующим правилам: an+1 = an – 2, если число
an – 2 – натуральное и еще не выписано на доску, в противном случае an+1 = an + 3. Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.
|
|
Сложность: 3+ Классы: 10,11
|
Функция f(x) такова, что для всех значений x выполняется равенство f(x + 1) = f(x) + 2x + 3. Известно, что f(0) = 1. Найдите f(2012).
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 112]