ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB, O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать? В треугольнике ABC проведены биссектрисы AD
и BE. Найдите величину угла C, если известно, что
AD . BC = BE . AC и AC Пусть p – простое число и представление числа n
в p-ичной системе имеет вид: n = akpk + ak–1pk–1 + ... + a1p1 + a0. На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно 4 + 2
Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок
В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.
В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.
Высота CD треугольника ABC делит сторону AB на отрезки AD и BD, причём AD . BD = CD2. Верно ли, что треугольник ABC прямоугольный?
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2.
На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.
Может ли некоторое сечение куба быть правильным пятиугольником? Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное (среднее геометрическое) проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на неё.
Даны числа: 4, 14, 24, ..., 94, 104. Докажите, что из них нельзя вычеркнуть сперва одно число, затем из оставшихся ещё два, затем ещё три и, наконец, ещё четыре числа так, чтобы после каждого вычёркивания сумма оставшихся чисел делилась на 11. Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел? |
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1119]
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
В Италии выпускают часы, в которых часовая стрелка делает в сутки один оборот, а минутная – 24 оборота, причём, как обычно, минутная стрелка длиннее часовой (в обычных часах часовая стрелка делает в сутки два оборота, а минутная – 24). Рассмотрим все положения двух стрелок и нулевого деления итальянских часов, которые встречаются и на обычных часах. Сколько таких положений существует на итальянских часах в течение суток? (Нулевое деление отмечает 24 часа в итальянских часах и 12 часов в обычных часах.)
Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1119]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке