ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника. Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC. Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
99 прямых разбивают плоскость на n частей. Найдите все возможные значения
n, меньшие 199.
Докажите, что при n = 4 среди полученных частей есть четырехугольник.
а) Найдите число всех полученных фигур.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке