ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 499]      



Задача 65067

Темы:   [ Десятичная система счисления ]
[ Рекуррентные соотношения (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте?

Прислать комментарий     Решение

Задача 65675

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?

Прислать комментарий     Решение

Задача 65729

Темы:   [ Десятичная система счисления ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Пусть p – простое число, большее 10k. Взяли число, кратное p, и вставили между какими-то двумя его соседними цифрами k-значное число A. Получили число, кратное p. В него вставили k-значное число B – между двумя соседними цифрами числа A, – и результат снова оказался кратным p. Докажите, что число B получается из числа A перестановкой цифр.

Прислать комментарий     Решение

Задача 66098

Темы:   [ Десятичная система счисления ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Таблица размером 2017×2017 заполнена ненулевыми цифрами. Среди 4034 чисел, десятичные записи которых совпадают со строками и столбцами этой таблицы, читаемыми слева направо и сверху вниз соответственно, все, кроме одного, делятся на простое число p, а оставшееся число на p не делится. Найдите все возможные значения p.

Прислать комментарий     Решение

Задача 66121

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

При каких натуральных n для каждого целого  k ≥ n  найдётся кратное n число с суммой цифр k?
Прислать комментарий     Решение


Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .