Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 171]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.
|
|
Сложность: 3 Классы: 8,9,10
|
Сколькими различными способами можно разложить натуральное число n на сумму трёх натуральных слагаемых? Два разложения, отличающиеся порядком слагаемых, считаются различными.
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
|
|
Сложность: 3 Классы: 10,11
|
Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?
|
|
Сложность: 3+ Классы: 8,9,10
|
Вычислите коэффициент при x100 в многочлене (1 + x + x2 + ... + x100)3 после приведения всех подобных членов.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 171]