ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 171]      



Задача 60414

 [Свойство шестиугольника]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10

Докажите равенство  

Прислать комментарий     Решение

Задача 60418

Темы:   [ Теория графов (прочее) ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

Прислать комментарий     Решение

Задача 65185

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 3+
Классы: 9,10,11

Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?

Прислать комментарий     Решение

Задача 65289

Темы:   [ Дискретное распределение ]
[ Сочетания и размещения ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9,10,11

Монету бросают 10 раз. Найдите вероятность того, что ни разу не выпадут два орла подряд.

Прислать комментарий     Решение

Задача 65482

Темы:   [ Системы точек и отрезков (прочее) ]
[ Сочетания и размещения ]
[ Малые шевеления ]
Сложность: 3+
Классы: 10,11

На плоскости проведены n прямых так, что каждые две пересекаются, но никакие четыре через одну точку не проходят. Всего имеются 16 точек пересечения, причём через 6 из них проходят по три прямые. Найдите n.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .