ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 62]      



Задача 76433

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Сколькими различными способами можно разложить натуральное число n на сумму трёх натуральных слагаемых? Два разложения, отличающиеся порядком слагаемых, считаются различными.

Прислать комментарий     Решение

Задача 30732

Темы:   [ Раскладки и разбиения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9

Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
  а) считаются различными?
  б) считаются тождественными?

Прислать комментарий     Решение

Задача 61420

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

Прислать комментарий     Решение

Задача 61509

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
Сложность: 3+
Классы: 8,9,10,11

Пусть p(n) – количество разбиений числа n (определение разбиений смотри здесь). Докажите равенства:

p(0) + p(1)x + p(2)x '' + ...  =  (1 + x + x² + ...)...(1 + xk + x2k + ...)...  =  (1 – x)–1(1 – x²)–1(1 – x³)–1...

(По определению считается, что  p(0) = 1.)

Прислать комментарий     Решение

Задача 61512

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Обозначим через d(n) количество разбиений числа n на различные слагаемые, а через l(n) – на нечётные. Докажите равенства:

  а)  d(0) + d(1)x + d(2)x² + ...  =  (1 + x)(1 + x²)(1 + x³)...;

  б)  l(0) + l(1)x + l(2)x² + ...  =  (1 – x)–1(1 – x³)–1(1 – x5)–1...;

   в)  d(n) = l(n)   (n = 0, 1, 2, ...).

(Считается по определению, что  d(0) = l(0) = 1.)

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .