Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 375]
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.
В параллелограмме ABCD провели трисектрисы углов A и B. Трисектрисы, ближние к стороне AB, пересекаются в точке O. Обозначим пересечение трисектрисы AO со второй трисектрисой угла B через A1, а пересечение трисектрисы BO со второй трисектрисой угла A через B1. Пусть M – середина отрезка A1B1, а прямая MO пересекает сторону AB в точке N. Докажите, что треугольник A1B1N – равносторонний.
В ромбе ABCD на стороне BC нашлась такая точка E, что AE = CD. Отрезок ED пересекается с описанной окружностью треугольника AEB в точке F. Докажите, что точки A, F и C лежат на одной прямой.
В треугольнике ABC угол при вершине A равен 60°. Внутри треугольника взята такая точка O, что ∠AOB = ∠AOC = 120°. Точки D и E – середины сторон AB и AC. Докажите, что четырёхугольник ADOE – вписанный.
В окружность вписан равносторонний треугольник ABC. На дуге AB, не содержащей точки C, выбрана точка M, отличная от A и B. Пусть прямые AC и BM пересекаются в точке K, а прямые BC и AM – в точке N. Докажите, что произведение
отрезков AK и BN не зависит от выбора точки M.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 375]